Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
نویسندگان
چکیده
The characteristics and mechanisms of Pb sorption by biochars produced from sugarcane bagasse at 250, 400, 500, and 600 °C were examined. The Pb sorption isotherms, kinetics and desorption were investigated. All biochars were effective in Pb sorption and were well described by Langmuir isotherm model and pseudo-second-order kinetic model. The maximum sorption capacity decreased from 21 to 6.1 mg g(-1) as temperature increased from 250 to 600 °C. The Pb sorption was rapid initially, probably controlled by cation exchange and complexation and then slowed down, which might be due to intraparticle diffusions. FTIR data and kinetic models suggested that oxygen functional groups were probably responsible for the high Pb sorption onto low temperature biochars (250 and 400 °C) whereas intraparticle diffusion was mainly responsible for low Pb sorption onto high temperature biochars (500 and 600 °C). Decreased phosphorus concentration indicated that P-induced Pb precipitation was also responsible for Pb sorption. Pyrolysis temperature significantly affected biochar properties and played an important role in Pb sorption capacity and mechanisms by biochars.
منابع مشابه
H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials.
Biochar is increasingly gaining attention due to multifunctional roles in soil amelioration, pollution mitigation and carbon sequestration. It is a significant challenge to compare the reported results from world-wide labs regarding the structure and sorption of biochars derived from various precursors under different pyrolytic conditions due to a lack of a simple linkage. By combining the publ...
متن کاملMechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry.
We investigated the mechanisms of Hg sorption onto biochars produced from Brazilian pepper (BP; Schinus terebinthifolius) at 300, 450, and 600 °C using different analytical techniques. The Hg sorption capacity of BP300, BP450, and BP600 was 24.2, 18.8, and 15.1 mg g(-1) based on Langmuir isotherm. FTIR data suggested the participation of phenolic hydroxyl and carboxylic groups in Hg sorption by...
متن کاملPhysicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
It is unclear how the properties of biochar control its ability to sorb metals. In this work, physicochemical properties of a variety of biochars, made from four types of feedstock at three pyrolysis temperatures (300, 450 and 600°C) were compared to their ability to sorb arsenic (As) and lead (Pb) in aqueous solutions. Experimental results showed that both feedstock types and pyrolysis tempera...
متن کاملCatechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars).
Although the major influence of black carbon (BC) on soil and sediment organic contaminant sorption is widely accepted, an understanding of the mechanisms and natural variation in pyrogenic carbon interaction with natural organic matter (NOM) is lacking. The sorption of a phenolic NOM monomer (catechol) and humic acids (HA) onto BC was examined using biochars made from oak, pine, and grass at 2...
متن کاملInvestigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures.
To investigate the relationship between Cr(VI) adsorption mechanisms and physio-chemical properties of biochar, ramie residues were oxygen-limited pyrolyzed under temperature varying from 300 to 600°C. Batch adsorption experiments indicated that higher pyrolysis temperature limits Cr(VI) sorption in terms of capacity and affinity due to a higher aromatic structure and fewer polar functional gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemosphere
دوره 105 شماره
صفحات -
تاریخ انتشار 2014